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Abstract

Predicting diverse object motions from a single static
image remains challenging, as current video generation
models often entangle object movement with camera mo-
tion and other scene changes. While recent methods can
predict specific motions from motion arrow input, they rely
on synthetic data and predefined motions, limiting their ap-
plication to complex scenes. We introduce Motion Modes,
a training-free approach that explores a pre-trained image-
to-video generator’s latent distribution to discover various
distinct and plausible motions focused on selected objects in
static images. We achieve this by employing a flow generator
guided by energy functions designed to disentangle object
and camera motion. Additionally, we use an energy inspired
by particle guidance [6] to diversify the generated motions,
without requiring explicit training data. Experimental re-
sults demonstrate that Motion Modes generates realistic and
varied object animations, surpassing previous methods and
even human predictions regarding plausibility and diversity.
Code will be released upon acceptance.

1. Introduction

Prediction is very difficult, especially if it’s about the future.

Niels Bohr

Consider Fig. 1. Can you imagine what could happen next
in each case? Humans are good at imagining multiple ways
the objects could move, even from single (image) snapshots.
While we can train networks to predict videos starting from
a conditioning text or image [3], most generated videos
entangle camera motion, object motion, and other scene
changes – predicting a diverse set of motions for a given
object still remains an open challenge.

Authoring plausible animations for objects in a static
image can be daunting. Researchers have recently been
able to train networks to predict cyclic and small-scale mo-
tions [2, 16]. Another family of methods [15, 23] simplify

Figure 1. Could you imagine how the scene evolves in each case?
See Fig. 2 for plausible yet distinct motion videos predicted by our
training-free approach Motion Modes.

this task by taking input motion arrows along with the start-
ing image to predict videos with motions that follow the
given arrows. However, such methods are trained on syn-
thetic data and do not generalize to complex motions, such
as the breaking ocean wave in Fig. 1. More importantly, they
require motions to be given, rather than predicting them. In
many scenarios, such as the roaring lion in Fig. 1, imagin-
ing a diverse set of motions and then conveying them with
multiple corresponding motion arrows itself, can be very
challenging. The ability to automatically discover diverse
yet plausible object motions can thus assist users in cinematic
exploration, motion illustration, and image/video editing.

The latest image-to-video generators provide this oppor-
tunity. Having been trained on a large variety of diverse
data, such generators, conditioned on static images, encode
distributions over plausible animations for scene objects and
other scene properties. Our paper subsequently asks and
affirmatively answers the research question: is it possible to
probe such a latent distribution to discover possible motions
for a given object in a static image?

Directly sampling these generators, conditioned on a start-
ing image, produces random videos, some of which may
include a motion of the selected object. Still, most will con-
sist of motions pertaining to other random objects, camera
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Figure 2. Motion Modes creates multiple distinct and plausible motions for a given object, disentangled from the motion of other objects,
camera and other scene changes. We show three distinct object motions for each of Figure 1’s images, representative of constrained rigid
motion (latop), complex deformations (wave) and articulated characters (lion and cat). We visualize motions as flow trajectories from blue
(first frame) to red (last frame). Ghosted intermediate frames further clarify complex motions. See supplemental for the result videos.

motion, lighting, and other changes to scene appearance.
Hence, the main challenges are to discover the motions of
an object in such a distribution that (i) disentangle motions
of the selected object from other scene changes, and (ii) find
multiple distinct object motions. We propose Motion Modes
as a training-free method to find such object motions by ex-
ploring the prior of a pre-trained image-to-video generator.

We show that both of the above challenges can be ad-
dressed with a training-free approach that guides the denois-
ing process of a flow generator [23] with carefully designed
guidance energies. Using a flow generator naturally disen-
tangles objects and camera motion from other scene changes.
Our proposed guidance energies fulfill two purposes: (i) they
further disentangle object and camera motion by encourag-
ing non-zero object motion and zero camera motion, and
(ii) encourage the generation of multiple distinct motions.
We demonstrate that such guidance can be applied directly
at inference time, without any fine-tuning of existing gen-
erators or access to suitable training data. Fig. 2 shows the
output of Motion Modes on the images shown in Fig. 1.

We evaluated Motion Modes on a variety of input im-
ages and compared ours with possible baselines (e.g., ran-
dom sampling, LLM-based) and ablated versions of our
full method. We performed human evaluations to assess
the quality of our generation, both in terms of plausibility
and diversity of the predicted motions. The qualitative and
quantitative evaluations show that we can reliably and ac-
curately predict potential future outcomes, sometimes even
surpassing human ability. We show that discovered motions
can be used for motion exploration and to facilitate drag-
based image editing. In summary, Motion Modes is the first
training-free method to generate diverse and plausible videos
of object motion from a single input image.

2. Related Work

Motion-aware video generators. Diffusion-based video
generators have quickly advanced in the last years [4, 5,
12, 22], now producing realistic and temporally consistent

videos. Adding extra control, Motion-I2V [23] introduced
an image-guided video generation method as a two-stage
process for consistent and controllable video generation.
First, it uses a diffusion-based motion field predictor to de-
termine pixel trajectories, followed by motion-augmented
temporal attention that improves feature propagation across
frames. We use this setup as our backbone and adapt it
with our guidance energies during the denoising phase. Ani-
mateAnything [7] presents an image animation method using
a video diffusion generator’s motion prior, enabling con-
trolled animation by guiding motion areas and speed. They
demonstrate fine-grained, text-aligned animations with intri-
cate motion sequences, even on open-world settings. Such
methods, however, require suitable text prompts to guide
the generation, which may be non-trivial in more complex
scenarios where mentally predicting future motions is chal-
lenging (see our LLM-based baseline in Sec. 4). Finally,
towards train-free methods, similar to the analysis of image
generators [10], Xiao et al. [28] identify (using PCA analy-
sis) motion-aware features in video diffusion models and use
them for interpretable and adaptable video motion control
across different architectures.
Generating cyclic motions. Creating future animations
from static scenes has received attention over the years.
Davis et al. [8] create interactive elements in videos by an-
alyzing subtle object vibrations to get motions, allowing
manipulation of video elements as if they were physically
interactive. The problem was recently revisited by Li et
al. [16] to learn an image-space prior on scene motion from a
collection of motion trajectories extracted from real video se-
quences depicting natural, oscillatory dynamics(e.g., leaves,
trees, flowers, candles). Using a Fourier domain analysis,
they learn a diffusion process to model the generation in the
frequency space. Earlier, in the context of geometric objects,
Mitra et al. [17] use symmetry analysis to infer plausible
part movement in mechanical objects, focusing on gear as-
semblies and linkages. Hu et al. [13] present a model for
predicting part mobility in 3D objects by learning how parts
of an object can move based on their spatial configuration

2



in a single static snapshot by leveraging a linearity trait in
typical object motions and creating a mapping that associates
static snapshots with dynamic units. To model small and
repetitive garment motion, Bertiche et al. [2] present an auto-
matic method to generate human cinemagraphs from single
RGB images to mimic garment dynamics arising from gentle
winds. They introduce a cyclic neural network that produces
looping cinemagraphs for the target loop duration. The net-
work is trained with normal maps obtained from renderings
of synthetic garment simulations. While they demonstrated
that the learned dynamics can be applied to real RGB images,
the reliance on training data does not allow these methods to
be applied to the broader class of general motions.
Movements from generative priors. Priors learned by
modern generators, trained on large datasets, have shown
to be useful for handle-based image manipulation. Drag-
GAN [20] presented an interactive tool for handle-based
realistic editing of natural images that relied on a feature-
based motion supervision that moves selected points toward
target positions, leveraging GAN’s internal features for pre-
cise localization. Similarly, image manipulators (e.g., point-
or box-based) have exploited priors implicit in diffusion-
based image [1, 18, 21, 25] or video [24, 26, 28] generators.
Beyond zeroshot methods, Dragapart [15] presents a part-
level editing system where they refine a pretrained image
generator on a new synthetic dataset showing annotated part
motion. The network, fine-tuned on synthetic data general-
izes well across real-world images and diverse categories.
However, the method fails on complex scenarios and object
categories not seen in the training set (Sec. 4). Dragany-
thing [27] uses entity representation for drag-based plausible
video generation in response to user arrows, but does not pro-
duce diverse results. There are also sampling strategies de-
signed to increase the diversity of outputs in diffusion-based
image generators [6]. They rely on concurrently denoising
a batch of multiple samples guided by a repulsive energy.
However, in the case of video generators, such strategies are
limited by the memory cost of the number of samples that
can be denoised together (≈10 GB per additional sample
for Motion-I2V [23] with gradient checkpointing). On the
other hand, we devise an iterative sampling strategy that is
not capped by the number of samples that can fit in memory
together (see Section 3.3).

3. Method
Our goal is to take an image y ∈ RH×W×3 and a mask
m ∈ RH×W marking an object in the image, and to find
a set of likely motions X := {x(1),x(2), . . . } of the object
given its context in the image. In Figure 3, for example,
the drawer could be opened or closed; however it could
not plausibly be moved up- or downwards. We represent
motions as time-dependent two-dimensional vector fields
x ∈ RF×H×W×2 for a motion that spans F frames. This
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Figure 3. Method Overview. We generate a motion x using a
guided denoising approach, where guidance energies encourage
smooth object motions that are disentangled from camera motions
and distinct from previously generated motions. Iterative sampling
gives us a set of diverse motions X .

vector field defines the trajectory of each pixel as per-frame
2D offsets from its initial position.

We generate motions by sampling an existing image-to-
video diffusion model that takes the image y as starting
frame. The main challenges for generating motions of an
object in an image are disentangling object motions from
other types of scene changes and finding a diverse set of
plausible object motions. To address these challenges, we
(i) use a diffusion model that generates motion separately
from appearance [23], effectively disentangling object / cam-
era motions from other scene changes, such as lighting or
shadows (Section 3.1), and (ii) define guidance energies that
we minimize during the denoising process to further separate
object motion from camera motion and to efficiently sam-
ple a diverse set of motions, rather than sampling motions
randomly from the motion prior (Section 3.2). We build the
motion set X by iteratively sampling the motion prior with
our guidance energies, and define a simple stopping criterion
to avoid implausible motions (Section 3.3).

3.1. Motion Generation

Our approach can be applied to any pre-trained diffusion-
based image-to-video model which generates motion and
appearance independently.
Training. Given an input image y and a motion x for this
image, a noisy motion vector field xt is first obtained by
adding a random amount of noise to x:

xt =
√

α(t) x+
√

1− α(t) ϵ, (1)
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where ϵ ∼ N (0, I) is Gaussian noise, and t ∈ [0, T ] param-
eterizes a noise schedule α that determines the amount of
noise in xt, with α(0) = 1 (no noise) and α(T ) = 0 (pure
noise). The denoiser ϵθ of the diffusion model is then trained
to invert this noising process by minimizing the following
loss through gradient-descent:

Ldiff := w(t)∥ϵθ(xt; t,y)− ϵ∥22,

where w(t) is a weighting scheme for different parameters t.
In practice, we employ a latent-space diffusion model that
operates on a lower-resolution latent representation of the
motions and the input image, which is obtained through a
VAE [14]. We omit this distinction in the notation, both for
clarity and for generality, as the method is orthogonal to the
choice of diffusion model. Specifically, our implementation
utilizes Motion-I2V [23] as the backbone.
Inference. Given the trained denoiser ϵθ, a noise-free motion
x0 for input image y is then generated by starting from pure
noise xT and iteratively denoising in small steps:

xT ∼ N (0, I)

xt−1 ∼ N (atxt − btϵθ(xt; t,y), σ
2
t I) (2)

where at, bt, and the variance σ2
t are chosen according

to a denoising schedule. This process creates a trajectory
xT ,xT−1, ...,x0 of motions with decreasing noise, where x0

is close to the natural motion manifold. Generated motions
x0 are typically plausible, but they entangle camera motions
with object motions. Additionally, exploring different mo-
tions by randomly sampling xT is inefficient, as it requires a
large number of samples to find multiple meaningful ways
in which y can change in time.

3.2. Guidance Energies

Our key contribution is the guidance energies that we intro-
duce into the inference process. The energies encourage the
generation of motions that are different from any previously
generated motions, where only the object in image y selected
by the mask m moves and the camera is static. The goal is
to significantly reduce the number of samples needed to get
a diverse set of focused object motions.
(i) Static camera guidance. We encourage zero camera mo-
tion by penalizing the average magnitude of motion outside
the object region defined by the object mask m:

Ec(x,m) :=

∑
k,i,j ∥xk,i,j∥ (1−mi,j)∑

k,i,j(1−mi,j)
,

where k, i, j are indices over frames, pixel rows, and pixel
columns, respectively, so that xk,i,j denotes a single offset
vector of the motion x. The mask m is 1 inside the object
region and 0 everywhere else.

(ii) Object motion guidance. We encourage object motion
by encouraging a difference between the average magnitude
of motion inside the object mask m and outside:

Eo(x,m) := ϕ (|Ec(x,m)− Ec(x, 1−m)|) .

Here, ϕ is an activation function that gives higher energies
for smaller differences, based on a soft inverse:

ϕ(a) := softplus
(
(a+ e)−1 − τ

)
,

where e is a small epsilon to avoid division by zero, and τ
is a threshold representing the point at which a satisfactory
loss value is reached. τ is empirically set to 40 for the object
motion guidance and 1 for the diversity guidance.
(iii) Diversity guidance. Given a set of previously generated
motions X , we encourage newly generated motions to be
different by adding a repulsion energy from each of the
motions in X :

Ed(x,m,X ) :=
∑
x̃∈X

∑
k,i,j ϕ (d(xk,i,j , x̃k,i,j)) mi,j∑

k,i,j mi,j
,

where d is a distance function between individual offset vec-
tors in a motion based on angle and magnitude differences:

d(a,b) := wmag(|∥a∥ − |b∥|) + wangle

(
1− a⊤b

∥a∥ ∥b∥

)
,

with weights wmag = 0.25 and wangle = 0.75 to emphasize
diverse motion directions.
(iv) Smoothness guidance. As a regularization, we also en-
courage smooth object motions by penalizing large changes
in motion across consecutive frames within the object mask:

Es(x,m) :=

∑
k,i,j d (xk,i,j ,xk+1,i,j)mi,j∑

k,i,j mi,j
, (3)

with wmag = 0.75 and wangle = 0.25 to minimize sudden
changes in magnitude.
Guided Inference. We combine the four energies into a
single (guidance) energy E(x,m,X ) := λdEd + λcEc +
λoEo+λsEs, with weights λd = 3.0, λc = 0.2, λo = 0.025
and λs = 0.1. Similiar to classifier-free guidance and sev-
eral image editing methods [9, 11, 21], we minimize these
energies during the inference process, effectively changing
the denoising trajectory, without requiring fine-tuning or re-
training (which would be difficult as our tasks lacks suitable
training data). Equation 2 takes the modified form:

xt−1 ∼ N (atxt − btϵθ(x
′
t; t,y) , σ

2
t I), with (4)

x′
t := xt −∇xt

E
(
x0
θ(xt; t,y),m,X

)
.

Here, x0
θ(xt; t,y) is the non-noisy motion predicted at infer-

ence step t, derived from Eq. 1 as:

x0
θ(xt; t,y) :=

1√
α(t)

(
xt −

√
1− α(t) ϵθ(xt; t,y)

)
.
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3.3. Stopping Criterion

We build the set X := {x(1),x(2), . . . } by iteratively sam-
pling the motion prior as described above. We can obtain an
arbitrary number of motions x using this strategy; for our
experiments we sample up to 6 different motions. However,
some objects and scenes may only admit a smaller number
of distinct motions, after which motions either repeat or stop.
We detect these cases using the guidance energy of the final
denoised motion E(x0,m,X ). We discard and re-sample
motions with guidance energies above a threshold ρ(= 5.0),
and stop sampling after discarding two motions in a row.

4. Results

To evaluate a set of motions X generated by our method,
we identify four desirable motion properties: (1) Plausible:
motions appear natural and physically reasonable. (2) Di-
verse: motions are largely different from each other. (3)
Expected: motions are plausible motions that match those
imagined by a viewer for the selected object in the image.
(4) Focused: motions avoid any scene motion (including
camera motion) that does not pertain to the selected object
or is directly caused by its motion (eg. the smoke from the
selected train (top-left) in Figure 6).

We show with both quantitative metrics and a user study
that our guided sampling strategy performs significantly
better along these properties than alternatives, given the
same sample budget and the same motion prior. We also
provide several qualitative comparisons that demonstrate
that Motion Modes can be used to explore object motions.
As additional application, we also show how our motions
can be used to assist users with drag-based image editing.
More evaluation results are provided in the supplement.
Baselines. As far as we know, Motion Modes is the first
training-free method to explore the problem of finding di-
verse motions for a given object in an image. However, there
are several alternatives we can compare against. For a fair
comparison, all baselines use the same Motion-I2V [23]
backbone as our method. (1) Prompt Generation: We give
GPT4-o an image with highlighted object and ask it to give
us prompts for diverse object motions, which we then feed
into Motion-I2V. Each prompt gives us one motion. (2) Con-
trolNet: We use Motion-I2V’s MotionBrush to restrict mo-
tions to the object region. This tool is a ControlNet trained
to limit motions to originate in the given region. We obtain
multiple motions by randomly sampling the starting noise
xT . (3) Random Arrows: We use Motion-I2V’s MotionDrag
with random arrows to explore possible object motions. We
sample an arrow by choosing a random starting position in-
side the object region, a random direction and a fixed length.
Each arrow gives us a different motion. (4) Random Noise:
We randomly sample the starting noise xT of Motion-I2V.
This is equivalent to our method without any guidance en-

Table 1. Quantitative comparison of the diverse and focused
property of our output motions to all baselines.

diverse focused

Ēd ↓ Ēf ↓ (Ēc ↓ Ēo ↓)

Prompt Gen. 1.28 1.71 1.11 2.31
ControlNet 1.75 1.14 0.07 2.22

Random Arrows 1.77 1.17 0.07 2.27
Random Noise 1.27 2.20 1.36 3.05

FPS Noise 1.21 1.98 1.23 2.74

Motion Modes (ours) 1.04 0.07 0.09 0.05

ergies. (5) Farthest Point Sampled (FPS) Noise: We use
farthest point sampling to sample distinct starting noise xT .

Qualitative comparison. Figure 5 shows a qualitative
comparison to all baselines on four scenes. (Please refer
to the supplement for a comparison on a larger set of im-
ages.) We can see that the prompt generation baseline does
tend to generate motions that are diverse, but the inaccurate
nature of the prompt-based control results in less focused
motions of the selected object. There is significant camera
motion, and we can see motions of secondary objects in the
basketball image, for example, where additional balls are
hallucinated. Restricting the motion to the object region
using the ControlNet baseline has the undesirable effect of
significantly reducing the overall amount of motion, to the
point of resulting in completely static scenes in many cases.
Similar to the prompt generation baseline, sampling the mo-
tion prior randomly or with farthest point sampling without
using our guidance energies entangles object motion with
camera motion. Additionally, we can see that our approach
produces more plausible and expected motions, compared
to all baselines. For example, the opening and closing mo-
tion of the drawer is more natural without deforming parts,
and the forward/backward motion of the tank generated by
Motion Modes is probably closer to the motion we would
expect from the tank than the more erratic motions generated
by the baselines. We further confirm this trend on a larger
set of scenes with the user study presented in the one of the
following sections. We attribute the improved plausibility to
our smoothness energy that avoids erratic motions.

Quantitative comparison. We measure two properties
with explicit quantitative metrics: First, the diversity of mo-
tions in a set X can be measured with the average diversity
guidance energy Ēd(m,X ) :=

∑
x∈X Ed(x,m,X )/|X |.

Second, the focus of motions on only the selected object can
be measured based on the average object motion and static
camera guidance energies Ēf := 0.5(Ēo+ Ēc), with Ēo and
Ēc computed analogous to Ēd, but scaled by a factor of 0.01
and 0.1, respectively, to account for scaling differences.

We compare our method to all baselines on a dataset of
28 input images that were obtained either through a state-of-
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Figure 4. User Study I. We compare the plausible, diverse, and
expected nature of our motions to four baselines. Each pair of bars
shows the percentage of comparisons in which our method or a
baseline was judged favorably with 95% confidence intervals.

the-art text-to-image generator, or from photographs. The
images cover a wide range of scenes, including articulated
objects, vehicles, animals, balls, and objects with and objects
with complex motions, such as waves and flags. Please refer
to the supplement for a full set of qualitative results.

Table 1 summarizes results. Due to our diversity guid-
ance, we achieve significantly more diverse motions than
any baseline. The ControlNet and Random Arrows baselines
also achieve relatively good focus, but looking at Fig. 5 (as
well as the camera and object guidance columns in Table 1),
we can see that this is mostly caused by a lack of both camera
and object motion. Our guidance energies fix the camera
without fixing the object, giving us more focused motions.

User studies. We perform two user studies. The first study
evaluates the plausible, diverse and expected nature of our
output motions compared to baselines, while the second
study examines the expected nature of our motions.

In the first study, participants were asked to compare the
top three motions of our method to top three motions of a
baseline, and choose the best set of motions along each of the
three metrics in three two-alternative forced choice questions.
The methods were presented in a randomized order. We re-
cruited 32 participants, each completed 10 comparisons per
baseline (a total of 320 comparisons per baseline). For each
comparison, a scene was chosen randomly from our dataset
of 27 images. Results are shown in Figure 4: motions of our
approach are judged to be more plausible, diverse and ex-
pected than motions found by baselines. Notedly, the prompt
generation baseline also has a good amount of diversity, com-
ing close to the diversity of our approach. We omitted the
Random Arrows baseline due to its similarity (and worse
performance) compared to ControlNet. It is included in an
extended version of the study in the supplement.

In the second study, 12 new participants were first asked
to describe all possible future motions of an object high-
lighted in an input image. We then revealed the first four
of our motions to them, and asked them to make two in-
dependent sets of selections - (i) motions that align with
their initial expectations and (ii) motions that are plausible.
Each participant assessed 10 scenes, and we computed three
metrics from their responses - expected (percentage of their

Table 2. Ablation of key components with metrics based on diverse,
focused metrics and their tradeoff Ē := 0.5(Ēd+ Ēf ). Underlined
values are closer to the best than to the worst value.

div. focused

Ē ↓ Ēd ↓ Ēf ↓ (Ēc ↓ Ēo ↓)

without Ec 0.83 1.02 0.64 1.29 0.00
without Eo 0.97 1.03 0.91 0.06 1.75
without Ed 0.72 1.36 0.08 0.13 0.04

FPS instead of Ed 0.79 1.49 0.10 0.11 0.08
ControlNet instead of Ec,Eo 0.88 0.96 0.80 0.15 1.45

Motion Modes 0.55 1.04 0.07 0.09 0.05

expected motions predicted by our motions), plausible (per-
centage of our motions deemed plausible), and inspirational
(percentage of our motions that were deemed plausible but
outside the participant’s expectation). Participants found on
average, that 96% of motions were plausible, 92% of their
expectations were produced by our approach, and 19% of
motions were plausible but outside expectation. Overall,
participants felt that our motions not only aligned well with
their expectations, but also consistently provided inspiration
for exploring unseen diverse motions in input scenes.

Ablation. We ablate several components of our method is
shown in Table 2. We use the same metrics as in Table 1,
but add another metric that illustrates the trade-off between
diversity and focus: Ē := 0.5(Ēd + Ēf ). We ablate the
three main guidance energies, and show the effect of using
farthest point sampling of the initial noise instead of the
diversity guidance, and a ControlNet instead of the camera
and object guidance. As expected, removing the camera
or object guidance results in strong camera motions (high
Ēc) or little object motion (high Ēo), and removing the
diversity energy or using farthest point sampling instead
results in less diversity (high Ēd). Swapping the object and
camera guidance with a ControlNet tends to fix the object in
place (high Ēo). We only achieve the best tradeoff between
diversity and focus using all of our components.

Application. Motion Modes, as presented, can help artists
efficiently explore a diverse set of motions for a selected
object, without having to sieve through a large set of sampled
videos containing disentangled object and camera motion.

Arrow-based motion prompting. We demonstrate a sec-
ond application: completing a rough motion hint to be used
as input to a drag-based image editor or a motion-to-video
generator. Figure 6 shows examples on two recent drag-
based image editors: DragonDiffusion [18] and Drag-A-
Part [15], and one motion-to-video generator [23], compar-
ing results with and without our motion completion. A single
drag arrow given by the user (shown in red) is used to retrieve
the closest one of our detailed motions (shown as multiple
red arrows for the drag-based image editors). We define
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ControlNetPrompt Gen. Random Noise FPS Noise Motion ModesRandom ArrowsInput

object
trajectory

background
trajectory
(if any)

time

Figure 5. Qualitative comparison. Each column shows the first three motions for the masked object in the input (left). Object trajectories
have red endpoints, background trajectories (usually due to camera motion) are purple. Motion is additionally visualized by overlaying
ghosted intermediate frames. We can see that Motion Modes finds more plausible and diverse object motions disentangled from any other
motions or scene changes, such as camera motions.

the closest motion as containing the 2D offset with lowest
distance to the provided drag arrow, across all frames of the
motion. We then use this motion, instead of the original drag

arrow, as conditional input to image editor or video gener-
ator. Please refer to the supplement for details. This has
two benefits: (i) Specifying complex image edits or video
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Figure 6. Motion Completion. We can use our set of motions X to complete rough motion hints (single red arrows) given by the user as
conditional input to either drag-based image editors like DragonDiffusion or Drag-A-Part, or motion-to-video generators like Motion-I2V.
Using the more detailed motions allows for complex motions that are hard to specify manually (like the flag or wave animations), and avoids
ambiguities in the conditional input that can lead to implausible results, like the floating train, or the squashed drawer.

motions in detail is both difficult and time consuming, thus
obtaining a complex edit/motion from a quick hint saves
time and does not require artistic expertise. For example, it
would be difficult to manually construct detailed drag arrows
for the flag or the ocean wave. (ii) Rough motion hints are
ambiguous and may be misinterpreted by the conditional
generators, resulting in implausible motions. For example,
dragging the train backwards with Dragon Diffusion results
in a floating train, or dragging the drawer towards its closed
position is misinterpreted as moving it upwards. Providing
a more detailed motion removes this ambiguity and avoids
implausible results.

5. Conclusion
We have presented Motion Modes as a training-free method
to discover distinct motions for a selected object mask in
a static image. Our primary contribution is a novel com-
bination of guidance energies applied at inference time, to
sample videos showing diverse object motions, from a pre-
trained diffusion-based video generator. We evaluated our
method on a range of complex images with both animate and
inanimate objects to discover non-trivial motions, sometimes
beyond those anticipated by viewers.
Limitations. Fig. 7 shows example limitations. Foremost,
since Motion Modes is training-free, we inherit any data bias
in our video generator (e.g., we will miss motions that can-
not be expressed in our generator’s sampling space). As we

currently seek a discrete set of motions, we are only able to
represent a continuous subspace of plausible motions a dis-
tinct set of discrete motions (eg. the laptop moving left-right,
and front-back, instead of anywhere on the desk in Fig. 2).
Further, since we progressively generate motions, we need a
number of forward passes equal to the number of extracted
motions. This can be slow and undesirable. Finally, very
specific underlying modes can produce unrealistic motions.

Figure 7. Limitations. (Top) The video prior can limit quality
(bent clock handles, two cat tails). (Bottom) Continuous motion
spaces can only be sampled discretely.
Future work. Motion Modes produces videos with negli-
gible camera motion. Extending our approach to generate
object motion with moving cameras, as commonly observed
in sport and action shots where the camera follows the tra-
jectory of the moving object, is subject to future work. We
would also like to extend our method beyond 2D motion
fields, to produce 3D motions: this would allow us to directly
output 4D dynamic shapes as animated mesh sequences, turn-
ing video generators into 4D asset generators.
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Figure 8. Extended user study. We compare the plausible, diverse,
and expected nature of our motions to five baselines, including the
Random Arrows baseline. Each pair of bars shows the percentage
of comparisons in which our method or a baseline was judged
favorably with 95% confidence intervals.

Table 3. Extended ablation of key components with metrics based
on diverse, focused metrics and their tradeoff Ē := 0.5(Ēd + Ēf ).
Underlined values are closer to the best than to the worst value.

div. focused

Ē ↓ Ēd ↓ Ēf ↓ (Ēc ↓ Ēo ↓)

without Ec 0.83 1.02 0.64 1.29 0.00
without Eo 0.97 1.03 0.91 0.06 1.75
without Ed 0.72 1.36 0.08 0.13 0.04
without Es 0.58 1.02 0.13 0.10 0.16

FPS instead of Ed 0.79 1.49 0.10 0.11 0.08
ControlNet instead of Ec,Eo 0.88 0.96 0.80 0.15 1.45

Motion Modes 0.55 1.04 0.07 0.09 0.05

A. Overview

In this appendix, we present extended versions of the user
study (Section B) and the ablation study (Section C). Addi-
tionally, we examine how much a given motion constrains
the video generator by showing different videos generated
for the same motion (Section D) and provide additional im-
plementation details as well as timing details (Section E).
Finally, we provide a more detailed description for some
of the baselines (Section F) and the arrow-based motion
prompting application (Section G).

Our project website, motionmodes.github.io,
also contains, among other details, a full qualitative com-
parison on 28 images, results of our method on a total of 34
different input images, and our arrow-based motion prompt-
ing application using a different video generator [19].

B. Extended User Study

In Figure 8, we present an extended version of the user study
that includes the random arrows baseline. Results for this
baseline are collected from 16 instead of 32 participants, the
other study details are the same as for all other baselines.
Results confirm our findings for all other baselines: users
find our motions significantly more plausible and diverse,
and they also better agree with the motions users expected
for the selected object.

Input Video 1Motion Video 2 Video 3

Figure 9. Multiple videos from one motion. We generate multiple
videos from the same motion x. They differ in small details, but
overall follow the motion accurately.

C. Extended Ablation

In Table 3, we provide an extended ablation study that in-
cludes an ablation of the smoothness guidance. Apart from
its function as regularizer, surprisingly, this energy also im-
proves object focus, i.e. it tends to better avoid static objects.
Our interpretation is that object motions are suppressed by
the motion generator’s prior during the denoising process if
they start out unrealistically jerky or jittery. Our smoothness
energy guides the denoising trajectory away from these bad
object motions early on, resulting in a less suppression from
the prior.

D. Multiple Videos Generated for One Motion

All videos in our experiments are obtained by first generating
a motion x and then generating a video conditioned on x.
To examine how closely the generated video follows x, in
Figure 9, we show multiple videos generated conditioned on
the same motion x from different random noises. We can
see that small details are different, but overall, the motions
of the different videos are similar to each other and follow
the generated motion x accurately.

E. Implementation Details

Guided Denoising As described in the paper, we use the
flow generation module from Motion-I2V [23] as our back-
bone. We further disconnect the ControlNet module de-
scribed in their paper, as we don’t need the conditioning and
we found that the constraints from ControlNet conditioning
limits the diversity of our motions. The flow generator uses
25 total timesteps for denoising out of which the first 20
timesteps are guided in our approach.

Timing and Memory In our experiments, we further used
gradient checkpointing on the U-Net to minimize the mem-
ory cost of backpropagating the guidance gradients in each
denoising timestep. Given the time cost of gradient check-
pointing and additional memory costs of backpropagation,
our guided denoising approach has a peak memory usage
of 21.7GB and requires on average 2 minutes 35 seconds
to fully denoise a sample across 25 timesteps. Unguided
vanilla denoising, on the other hand, has 12.3GB peak mem-
ory usage and requires 1 minute 18 seconds on average to
fully denoise a sample.
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F. Additional Baseline Details
Prompt Generation. Our backbone Motion-I2V [23] sup-
ports text-conditioning for image-to-video generation. In the
Prompt Generation baseline, we aim to sample diverse and
focused object motions using a set of distinct text prompts.
To automate this process, we use GPT-4 to generate text
prompts that correspond to distinct object motions for a
given input image and object. The prompts are then used as
text conditioning for Motion-I2V for video generation.

Specifically, we query GPT-4 for the prompts as follows.
GPT-4 is first provided the following context: “I am using
a text-based video generator to discover all the different
ways a specific object in an image can move, and I wish to
generate a set of text prompts in order to achieve this. In
particular, I will provide an image and specify an object.
For each such specification, I would like to generate 6 text
prompts that can be input to the video generator in order to
explore the distinct motions the specified object can have in
the scene. Remember that we want the motions to be focused
only on the specified object and to each be distinct from the
other.” We then provide the model with an image along with
a text specification of the object in the context of the same
conversation to retrieve the text prompts. Some examples
of retrieved prompts follow. For a scene with a basketball
near a net: “video of a basketball swishing through the hoop
after a jump shot”, “video of a basketball bouncing off the
rim and falling away from the hoop”, “video of a basketball
spinning around the rim before dropping in”. For a scene
with a cat on a ledge: “video of a cat walking gracefully
along a ledge with a scenic background”, “video of a cat
jumping off the ledge gracefully”, “video of a cat stopping
and looking around curiously”.

Random Arrows. Our backbone Motion-I2V [23] can be
conditioned on a drag arrow that describes the rough motion
direction and motion magnitude of a point in the image, in
an application the authors call MotionDrag. In the Random
Arrows baseline, we use random drag arrows to explore
a diverse set of motions for a selected object. Specifically,
given an object mask m, we set the starting point for the drag
arrow to a random point inside the object mask, randomly
sample a direction, and sample the length of the drag arrow
uniformly from an interval of reasonable lengths (20 to 80
pixels in an image with 320p resolution). We found that
arrow lengths outside this interval tended to either result in
zero object motion or implausible motions.

G. Additional Arrow-based Prompting Details
Our arrow-based prompting application shows that Mo-
tion Modes can be used to facilitate user interaction with
drag-controlled image editors and video generators. As im-
age editors, we work with Drag-A-Part [15] and Dragon-

Diffusion [18], and as video editors, we use MOFA [19]
and the MotionDrag application of Motion-I2V [23]. We
take as input a given drag arrow, defined by a start point
a ∈ [1, H]× [1,W ] and end point b ∈ [1, H]× [1,W ], both
given as pixel indices for resolution W×H . We then use this
drag arrow to retrieve the closest motion x from our motion
set X . Recall that in each frame, our motions describe the
same offset of each image point from its starting position as
a drag arrow. Thus we can simply compare the drag arrow
to each frame of the motion x at the starting position a of
the drag arrow:

min
k

∥∥∥xk,a −
−→
ab

∥∥∥
2
, (5)

where xk,a is the offset vector of the motion x in frame k
at the starting point a of the drag arrow. The motion x with
closest distance to the drag arrow describes a motion similar
to the drag arrow, but typically has good plausibility and
much more detail than the drag arrow. We then convert the
retrieved motion back into a representation that the image
or video editors can use as input. Specifically, Drag-A-Part
can take up to 10 drag arrows as input, for DragonDiffusion,
we can fit up to 100 arrows into memory, for MOFA, we use
up to 50 arrows (we found that more arrows result in non-
static backgrounds), and for Motion-I2V, we can directly
provide the retrieved motion x as conditional input. To
convert a motion to n drag arrows, we cluster the offsets
in the retrieved frame of the motion into n clusters using
K-Means, and use the cluster means as drag arrows.
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